v Al for Cyber Security Spam email detection

Spam Email detection

Dataset: https://www.kaggle.com/datasets/venky73/spam-mails-dataset/data

Machine learning provides a powerful way to combat spam emails. Here's the basic process:

 Data Preparation: Collect a labeled dataset of emails (spam and non-spam). Text data is cleaned and transformed into numerical features
(e.g., word counts, presence of certain phrases).

¢ Model Selection: Choose a machine learning algorithm like Naive Bayes, Support Vector Machines (SVMs), or Random Forests.

¢ Training: Train the model on the prepared dataset, allowing it to learn patterns that distinguish spam from legitimate emails. Prediction:
The trained model can now classify new, unseen emails as spam or not spam.

It discusses Enron emails and the data was collected from Enron1 folder.

Link: https://www?2.aueb.gr/users/ion/data/enron-spam/

The dataset contains two folders of emails, spam and ham, each containing 517 emails.
The emails are labelled as

e spam
e ham

v Importing Required Liberaries

import numpy as np

import pandas as pd

import warnings
warnings.filterwarnings("ignore")

v Data Importing

df = pd.read_csv('spam_ham_dataset.csv')

df.head()

ro4 Unnamed: © label text label_num
0 605 ham Subject: enron methanol ; meter # : 988291\r\n... 0
1 2349 ham Subject: hpl nom for january 9, 2001\r\n(see... 0
2 3624 ham Subject: neon retreat\r\nho ho ho , we 're ar... 0
3 4685 spam Subject: photoshop , windows , office . cheap ... 1
4 2030 ham Subject: re : indian springs\r\nthis deal is t... 0

print(df['text'][@])
print(f"\nLabel: { df['label’'][0] }")

5% Subject: enron methanol ; meter # : 988291

this is a follow up to the note i gave you on monday , 4 / 3 / 00 { preliminary
flow data provided by daren } .

please override pop ' s daily volume { presently zero } to reflect daily
activity you can obtain from gas control .
this change is needed asap for economics purposes .

Label: ham
print(df['text'][3])
print(f"\nLabel: { df['label’'][3] }")

E{} Subject: photoshop , windows , office . cheap . main trending
abasements darer prudently fortuitous undergone

https://www.google.com/url?q=https%3A%2F%2Fwww.kaggle.com%2Fdatasets%2Fvenky73%2Fspam-mails-dataset%2Fdata
https://www.google.com/url?q=https%3A%2F%2Fwww2.aueb.gr%2Fusers%2Fion%2Fdata%2Fenron-spam%2F

lighthearted charm orinoco taster

railroad affluent pornographic cuvier

irvin parkhouse blameworthy chlorophyll

robed diagrammatic fogarty clears bayda
inconveniencing managing represented smartness hashish
academies shareholders unload badness

danielson pure caffein

spaniard chargeable levin

Label: spam
v Data Preprocessing

df = df.rename(columns={df.columns[@]: 'word_count'})

df.head()

Ez} word_count label text label_num
0 605 ham Subject: enron methanol ; meter # : 988291\r\n... 0
1 2349 ham Subject: hpl nom for january 9, 2001\r\n(see... 0
2 3624 ham Subject: neon retreat\r\nho ho ho , we 're ar... 0
3 4685 spam Subject: photoshop , windows , office . cheap ... 1
4 2030 ham Subject: re : indian springs\r\nthis deal is t... 0

df.sample(3)

3> word_count label text label_num
2 3624 ham Subject: neon retreat\r\nho ho ho , we 're ar... 0

4135 1995 ham Subject: re : occidental battleground meter 98... 0

4422 2977 ham Subject: re : april 2001 spot purchases\r\nvan... 0

analyzing the word count of ham messages

df[df['label_num']==0].describe()['word_count']

5% count 3672.000000

mean 1835.500000
std 1060.159422
min 0.000000
25% 917.750000
50% 1835.500000
75% 2753.250000
max 3671.000000

Name: word_count, dtype: float64

analyzing word count of spam messages

df[df['label_num']==1].describe()['word_count"']

S+ count 1499.00000

mean 4421 .00000
std 432.86834
min 3672.00000
25% 4046 .50000
50% 4421.00000
75% 4795.50000
max 5170.00000

Name: word_count, dtype: float64

v ML Application

from sklearn.feature_extraction.text import TfidfVectorizer
tfid = TfidfVectorizer(max_features=3000)

X = tfid.fit_transform(df['text'])
v Data Splitting

X.shape

5% (5171, 3000)
y = df['label_num']

y.shape

5% (5171,)

from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X,y,test_size=0.2,random_state=47)

X_train.shape, X_test.shape, y_train.shape ,y_test.shape

v

5+ ((4136, 3000), (1035, 3000), (4136,), (1035,))
v Model Creation

from sklearn.linear_model import LogisticRegression

1r = LogisticRegression(C=1,solver="'liblinear',penalty="'12", max_iter=50)
1r.fit(X_train,y_train)

0

LogisticRegression

iLogisticRegression(C=1, max_iter=50, solver='liblinear')

v Model evaluation

y_pred = lr.predict(X_test)

from sklearn.metrics import r2_score, accuracy_score

print(r2_score(y_test,y_pred))
print(accuracy_score(y_test,y_pred))

5}' 0.940982484817958
0.9884057971014493

