v Al for Cyber Security Spam email detection

Spam Email detection

Dataset: https://www.kaggle.com/datasets/venky73/spam-mails-dataset/data

Machine learning provides a powerful way to combat spam emails. Here's the basic process:

 Data Preparation: Collect a labeled dataset of emails (spam and non-spam). Text data is cleaned and transformed into numerical features
(e.g., word counts, presence of certain phrases).

¢ Model Selection: Choose a machine learning algorithm like Naive Bayes, Support Vector Machines (SVMs), or Random Forests.

¢ Training: Train the model on the prepared dataset, allowing it to learn patterns that distinguish spam from legitimate emails. Prediction:
The trained model can now classify new, unseen emails as spam or not spam.

It discusses Enron emails and the data was collected from Enron1 folder.

Link: https://www?2.aueb.gr/users/ion/data/enron-spam/

The dataset contains two folders of emails, spam and ham, each containing 517 emails.
The emails are labelled as

e spam
e ham

v Importing Required Liberaries

import numpy as np

import pandas as pd

import warnings
warnings.filterwarnings("ignore")

v Data Importing

df = pd.read_csv('spam_ham_dataset.csv')

df.head()

ro4 Unnamed: © label text label_num
0 605 ham Subject: enron methanol ; meter # : 988291\r\n... 0
1 2349  ham  Subject: hpl nom for january 9, 2001\r\n( see... 0
2 3624 ham Subject: neon retreat\r\nho ho ho , we 're ar... 0
3 4685 spam  Subject: photoshop , windows , office . cheap ... 1
4 2030  ham Subject: re : indian springs\r\nthis deal is t... 0

print(df['text'][@])
print(f"\nLabel: { df['label’'][0] }")

5% Subject: enron methanol ; meter # : 988291

this is a follow up to the note i gave you on monday , 4 / 3 / 00 { preliminary
flow data provided by daren } .

please override pop ' s daily volume { presently zero } to reflect daily
activity you can obtain from gas control .
this change is needed asap for economics purposes .

Label: ham
print(df['text'][3])
print(f"\nLabel: { df['label’'][3] }")

E{} Subject: photoshop , windows , office . cheap . main trending
abasements darer prudently fortuitous undergone
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Label: spam
v Data Preprocessing

df = df.rename(columns={df.columns[@]: 'word_count'})

df.head()

Ez} word_count label text label_num
0 605 ham Subject: enron methanol ; meter # : 988291\r\n... 0
1 2349 ham  Subject: hpl nom for january 9, 2001\r\n( see... 0
2 3624  ham Subject: neon retreat\r\nho ho ho , we 're ar... 0
3 4685 spam  Subject: photoshop , windows , office . cheap ... 1
4 2030 ham Subject: re : indian springs\r\nthis deal is t... 0

df.sample(3)

3> word_count label text label_num
2 3624 ham  Subject: neon retreat\r\nho ho ho , we 're ar... 0

4135 1995 ham Subject: re : occidental battleground meter 98... 0

4422 2977 ham Subject: re : april 2001 spot purchases\r\nvan... 0

analyzing the word count of ham messages

df[df['label_num']==0].describe()['word_count']

5% count 3672.000000

mean 1835.500000
std 1060.159422
min 0.000000
25% 917.750000
50% 1835.500000
75% 2753.250000
max 3671.000000

Name: word_count, dtype: float64

analyzing word count of spam messages

df[df['label_num']==1].describe()['word_count"']

S+ count 1499.00000

mean 4421 .00000
std 432.86834
min 3672.00000
25% 4046 .50000
50% 4421.00000
75% 4795.50000
max 5170.00000

Name: word_count, dtype: float64

v ML Application



from sklearn.feature_extraction.text import TfidfVectorizer
tfid = TfidfVectorizer(max_features=3000)

X = tfid.fit_transform(df['text'])
v Data Splitting

X.shape

5% (5171, 3000)
y = df['label_num']

y.shape

5% (5171,)

from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X,y,test_size=0.2,random_state=47)

X_train.shape, X_test.shape, y_train.shape ,y_test.shape

v

5+ ((4136, 3000), (1035, 3000), (4136,), (1035,))
v Model Creation

from sklearn.linear_model import LogisticRegression

1r = LogisticRegression(C=1,solver="'liblinear',penalty="'12", max_iter=50)
1r.fit(X_train,y_train)

0

LogisticRegression

iLogisticRegression(C=1, max_iter=50, solver='liblinear')

v Model evaluation

y_pred = lr.predict(X_test)

from sklearn.metrics import r2_score, accuracy_score

print(r2_score(y_test,y_pred))
print(accuracy_score(y_test,y_pred))

5}' 0.940982484817958
0.9884057971014493






